DEMONSTRATION OF CLOSED-LOOP STIMULATION PLATFORM WITH HARDWARE ACCELERATED ARTIFACT REMOVAL

The lab has developed and validated a closed-loop stimulation platform capable of updating the stimulation montage at intervals as brief as 10 milliseconds, accompanied by a latency of only 20 milliseconds. However, the frequent updates to the montage generate biomimetic and varying electrical artifacts, thereby obscuring the neural response. Our research team has designed a proprietary integrated chip that leverages the spatial correlation inherent in the artifacts to facilitate hardware-accelerated removal. It enables uninterrupted, real-time monitoring of neural responses during active stimulation.

The lab member is validating the recording system’s capability to record emulated neural signals concurrently with biomimetic stimulation, specifically dynamic stimulation. The upper trace displays on the screen represents the raw input data, which includes stimulation artifacts and an oscillatory signal representing the underlying neural response. The bottom trace displays the neural response extracted by the proprietary recording system.